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Abstract—With the rapid development of distributed edge
intelligence (DEI) within Internet of vehicle (IoV) network, it is
required to support heterogeneous rapid, reliable and lightweight
authentication which prevents eavesdropping, tampering and
replay attacks. Radio Frequency Fingerprinting (RFF), which
leverages unique and tamper-proof hardware characteristics,
is an emerging deep learning based physical layer technology
poised to achieve excellent authentication within DEI enhanced
heterogeneous IoV. However, centralized collection of critical
datasets will bring severe privacy concerns as well as huge com-
munication overheads towards resources-constrained IoV nodes.
In this paper, we propose a deep federated fractional scattering
fingerprinting network (FFSFNet) which amalgamates fractional
wavelet scattering and federated learning to achieve excellent
identification. Particularly, we first exploit fractional wavelet
scattering to extract RFF characteristics from non-stationary
waveform, eliminate redundancies and enhance interpretabil-
ity. To improve the training efficiency and privacy protection
capability, we design a novel federated framework, which not
only completes distributed training, reduces overhead but also
protects privacy. Furthermore, we conducted a comprehensive
comparative analysis of different model quantization schemes
and validated the proposed scheme with field programmable gate
array (FPGA) accelerators. Experimental results demonstrate
that the proposed FFSFNet can maintain excellent identification
performance with only 5.08% of original samples. The model size
and inference latency can be effectively improved by quantization
with limited degradation. Moreover, the identification testing
accuracy of FFSFNet can eventually converge to 99.4% with
0.64ms inference latency per sample.

Index Terms—Distributed edge intelligence, radio frequency
fingerprinting, fractional wavelet, scattering network, heteroge-
neous federated learning.
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Fig. 1. The architecture of distributed edge intelligence empowered Internet-
of-Vehicles.

IN recent years, the rapid advancement of the Internet
of Vehicles (IoV) has facilitated seamless connectivity

among smart vehicles, road infrastructure, network facilities
and users. This intelligent integration of IoV enables com-
prehensive environmental perception, enhances transportation
efficiency, and reduces road accidents, paving the way for
next generation of intelligent transportation systems [1]–[4].
The intelligent IoV network encompasses a vast array of
heterogeneous vehicles and roadside units (RSUs) nodes that
generate substantial volumes of critical information [5], [6].
Furthermore, the promising IoV architecture, based on cloud
and edge intelligence, enables distributed artificial intelligent
(AI) among smart vehicles and RSUs to process related data
and computations locally. Given the vast amount of raw data
generated within IoV networks, AI plays a crucial role in ap-
plications such as assisted driving, autonomous driving, intel-
ligent traffic management and vehicle-road collaboration [7].
Centralized data collection through wireless communications
is essential in IoV networks, while it raises significant privacy
concerns and imposes substantial transmission overheads.

To tackle with the issues above, the framework of dis-
tributed edge intelligence (DEI) is developed in which edge
servers cooperate with a number of edge clients to jointly
train effective AI models for various IoV applications while
preserving clients’ privacy [8]. To achieve this paradigm,
two big challenges are required to respectively deal with in
communications and learning domain. As shown in Fig. 1, in
communications domain, it is required to guarantee rapid and
reliable wireless access links during IoV communications be-
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tween heterogeneous nodes. If rapid and reliable coordination
of information among various communication nodes within
vehicles can be maintained, a secure, efficient and environmen-
tally friendly IoV system can be effectively ensured [9], [10].
However, traditional wireless access authentication protocols
which rely on cryptography are time-consuming and suscep-
tible to wireless deception and intrusion attacks. Furthermore,
as various IoV nodes utilize diverse communication protocols,
a vast number of heterogeneous nodes are continuously gener-
ated and coexist in typical scenarios [11]–[13]. Rapid and re-
liable scheduling of heterogeneous data, computing resources
through DEI poses significant challenges in the intelligent
IoV network [14]. Within learning domain, federated learning
related issues arise, such as redundant information, limited
computing resources, privacy and so forth. The collaboration
tasks within DEI framework requires the efficient transmission
of crucial information, while also addressing concerns such
as data privacy, computing resource allocation and trans-
mission overhead [15]–[17]. Meanwhile, reliable, rapid, and
lightweight authentication services are essential for facilitating
the exchange of critical information across various scenarios
within IoV networks [18]–[20].

Radio frequency fingerprinting (RFF) which offers high
reliability and low latency identification through unique and
tamper-proof hardware features can be utilized to establish
the security link within IoV networks [21]–[25]. Although
RFF can provide secure and reliable authentication services
between heterogeneous nodes in IoV networks, traditional
RFF relies on centralized training, which requires massive
shared data and computing resources. Within learning do-
main, federated learning (FL) is proposed to guarantee the
data privacy and coordinate computing resources [26]–[29].
However, the data redundancy and Insufficient interpretability
greatly limits the widespread application of the DEI [30]. From
the perspective of DEI empowered IoV, distributed FL can
handle the privacy concerns, reduce the transmission overhead
and coordinate computing resources. Furthermore, RFF can
provide reliable and rapid authentication services to protect
the critical information from attacking. As illustrated in Fig. 2,
the architecture of deep federated fractional scattering network
is designed for the heterogeneous IoV fingerprinting. This
framework allows diverse local nodes which includes vehicles
nodes, RSUs, and user to utilize their extensive datasets
for local model training, thereby eliminating transmission
overhead between nodes. Moreover, traditional models are
typically deployed in 32-bit float-point format which always
requires huge memory and computing resources.

To address high memory usage and energy consumption in
the deployment of practical deep neural networks (DNNs), a
comprehensive survey of quantization concepts and methods
for DNNs is provided in [31]. A remarkable quantization
scheme can be applied to the recommendation models in pro-
duction environments based on low-precision hardware [32].
To mitigate the accuracy loss associated with quantization after
model training, a novel quantization scheme is designed to
solve high dynamic range, zero overflow, diverse normaliza-
tion, and limited model parameters [33]. Besides, the trade
off between delay and accuracy in model quantization still is

City

Vehicle
Nodes

Smart Home

tween heterogeneous nodes. If rapid and reliable coordinationtween heterogeneous nodes. If rapid and reliable coordination

Nodes

Sensors

IoV
Nodes 

Global Model

computing resources, privacy and so forth. The collaboration

Application Layer

Edge Layer

Cloud Layer

MEC
Server 1

MEC
Server 2

MEC
Server N-1

MEC
Server N

Local gradient 
updates

Global quantified

M epoches

Differential 
Privacy

enhancement

IoV

Cloud Layer

Global model 
weight

User

Fig. 2. The architecture of deep federated fractional scattering network for
heterogeneous Internet-of-Vehicles fingerprinting.

a challenging problem. The computing accelerator based on
FPGA can utilize model prune, quantization and multi-core
parallel computing to achieve efficient model inference for
edge application [34]. Considering the energy consumption of
federated learning, the gradient sparsity, weight quantization
and pruning can be utilized to improve the efficiency of
federated models which are deployed on 5G terminals [35].
Without model quantization optimization, these models re-
main large, necessitating high memory and causing high
inference latency which complicates the model’s deployment
in resource-constrained IoV network, presenting significant
challenges. In summary, how to establish an excellent RFF
with distributed edge intelligence for providing rapid and
reliable authentication ability embracing the following three
challenging aspects:

1) Privacy and transmission overhead concerns: The con-
ventional centralized learning scheme imposes signifi-
cant demands on computing resources and raises sub-
stantial privacy concerns. Designing an effective training
framework to efficiently ensure privacy protection and
facilitate training on resource-limited nodes has emerged
as a challenging problem.

2) Data redundancy and insufficient interpretability: The
extensive raw datasets from various nodes contains
significant redundancy. Effectively extracting the RFF
characteristics embedded within non-stationary wave-
form poses substantial challenges. Moreover, traditional
model training suffers from its black box operational
mode constraining the practical deployment and appli-
cation.

3) Model practical deployment limitations: The optimiza-
tion and deployment of high-performance, cost-effective
models have become pressing concerns. Traditional
post-training model deployment encounters challenges
related to memory, performance, and latency, all of
which must be addressed within IoV networks.

A. Related Work

With the rapid evolution of intelligent IoV, the traditional
high-level encryption-based authentication schemes becoming
vulnerable to fake and deception attacks, making them in-
adequate for critical applications such as autonomous driv-
ing, vehicle-road collaboration, and human-machine interac-
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tion. A novel physical layer authentication scheme which 
leverages unique hardware features and facilitated by deep 
learning can offer secure, reliable, and lightweight access 
authentication services through DEI within IoV networks. DEI 
enables distributed machine learning among smart vehicles 
and roadside units (RSUs) at the IoV network edge, close 
to the data sources. By deploying models on data-source 
side, DEI significantly r educes d ata t ransmission overhead 
and ensures timely feedback during data generation, thereby 
enhancing the operational efficiency o f t he e ntire intelligent 
IoV. However, each distributed model trains solely on local 
data, lacking the ability to utilize global data. Moreover, 
distributed RFF requires substantial datasets for model learn-
ing. Designing an efficient n etwork m odel i s c rucial f or its 
effective deployment. Since DEI is often deployed at the 
edge, lightweight deployment and efficient i nference o f RFF 
models are key constraints for its application. In summary, 
efficiently d esigning a nd d eploying R FF m odels w ithin IoV 
networks under a distributed architecture remains a significant 
challenge. Furthermore, model quantization emerges as an 
essential technology for efficient deployment, reducing model 
size and inference latency with limited performance losses.

Despite the challenges discussed above are still exist, re-
searchers have made significant s trides i n a ddressing these 
issues. To address the signal length diversity and robustness 
of RFF, authors in [36] proposed a novel network capable 
of handling variable-length signals, enabling efficient feature 
extraction of diverse samples. Considering the non-stationary 
RFF application, authors in [37] proposed a deep learning 
based RFF scheme for massive LoRa nodes identification. 
Authors in [38] proposed a deep learning-based RFF that 
exploits physical-layer hardware impairments as unique fea-
tures for devices identification. To c ontend w ith m ixed time-
varying distortion challenges, authors in [39] involved spectral 
cyclic shift division to suppress interference. Considering the 
inevitable presence of unmanned aerial vehicle (UAV), authors 
in [40] extracted features from preamble signals and con-
structed a distributed model for UAV identification. To address 
the data collection under various channel conditions, authors 
in [41] proposed different data augmentations for transmitter 
and receiver according to the availability of datasets. The 
authors in [42] reviewed the distance-based classifier and au-
tomatic feature extractor. Then, combined with deep learning 
to form hybrid RFF schemes. The authors in [43] provided the 
tutorial of building closed-set and open-set RFF system, and 
created the testbed to publicly provide the collected datasets 
online.

Traditional RFF schemes demand extensive datasets, signif-
icant computational resources for training and interpretability. 
Authors in [44] have developed translation-invariant operators, 
and a scattering propagator was introduced to capture the non-
linear characteristics. Furthermore, considering the translation 
invariance of wavelet scattering networks, the authors in [45] 
confirmed their ability to preserve high-frequency characteris-
tics. Authors in [46] defined the temporal deformation and lo-
cal translation invariance which enhanced the representation of 
Mel-scale frequency cepstral coefficients (MFCC) with multi-
order scattering coefficients. Considering the time shift invari-

ance of signals, authors in [47] introduced a time-frequency
scattering transformation to achieve multiscale energy decom-
position. Authors in [48] proposed fractional wavelet scattering
network that efficiently extracts non-stationary medical tex-
ture features. To improve the model’s interpretability, authors
in [49] proposed a scattering network based on fractional
wavelets, the energy conservation, deformation stability and
other properties have been proven. Authors in [50] involved
deep fractional scattering to extract RFF features of LoRa
preamble, demonstrating that it can efficiently handle RFF fea-
tures under non-stationary conditions. Furthermore, consider-
ing the reliance of distributed learning towards computational
resources, authors in [51] proposed a hybrid architecture that
combines fractional scattering networks with FL to ensure
the privacy and efficiency. Therefore, efficient RFF features
extraction methods can achieve the removal of redundant and
improve the learning effectiveness of FL framework.

In typical IoV networks, heterogeneity is a defining charac-
teristic. FL can effectively harnesses distributed intelligence
nodes, encompassing computational resources and limited
storage capacity, as emphasized by [52], [53]. It is crucial for
client models to effectively update the server model to achieve
the desired performance and convergence, as discussed in [54].
To improve the learning efficiency, authors in [55] proposed
an adaptive gradient update strategy which achieves dynamic
optimization during the training. To realize optimal model,
authors in [56] employed dynamic updates weights to improve
the FL efficiency. Furthermore, authors in [57] advocated for
dynamic optimization through a strategic combination of local
iterations and global aggregation. In their study [58], authors
proposed a RFF scheme that leverages data augmentation to
discern large-scale nodes. Authors in [59] developed RFF
FL model to identify Wi-Fi samples. Results confirmed that
proposed scheme achieves competitive accuracy compared to
centralized training.

Currently, traditional RFF schemes cannot be directly ap-
plied to heterogeneous IoV network to provide rapid, reliable
and lightweight authentication services due to the limited
storage, computing resources and privacy. Model quantization
is a crucial technology for reducing computing and memory
requirements. Authors in [60] proposed a scheme that using
integer weights for model inference. Experimental results
indicated that proposed scheme successfully balances accuracy
and inference latency. Different models have its own specific
structural, authors in [61] proposed a customized quantization
strategy for different layers. Authors in [63] explored the
application of various quantization strategies in lightweight
distributed semantic communication. Experimental results re-
vealed that by pruning and quantizing, a compression rate
of nearly 40 times can be achieved almost without losing
performance. In summary, DEI and RFF can be utilized
to authenticate heterogeneous nodes within IoV networks.
However, existing traditional models lack interpretability and
require huge training samples. The presence of redundant
information significantly hampers the efficiency of learning.
Consequently, efficiently extracting RFF characteristics, en-
hancing interpretability and privacy protection have become
paramount issues within DEI framework. Furthermore, tradi-
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tional model deployment imposes high demands on computing 
resources and memory, leading to significant inefficiencies 
and increased inference latency. Consequently, implementing 
privacy-protected, explainable, and efficient d istributed RFF 
within DEI-enabled intelligent IoV systems has become a 
significant challenge.

B. Contribution
To address the aforementioned challenges, we proposed

FFSFNet which amalgamates fractional scattering and feder-
ated learning to achieve excellent identification performance
within IoV network. Moreover, FFSFNet can significantly
reduce redundancy and improve learning efficiency under the
DEI framework, while enhancing the interpretability, deploy-
ment feasibility and privacy. Besides, model quantization can
optimize the size while keeping performance loss within a
controllable range. Furthermore, reducing its dependence on
memory, inference latency, and greatly promotes its practical
deployment within IoV network. Specifically, the main contri-
butions of this paper are summarized as follows:

1) To mitigate data privacy concerns and reduce the sub-
stantial communication overhead associated with cen-
tralized data collection, storage, and sharing. Within DEI
framework, federated learning is introduced to jointly
train effective models for identification while preserving
privacy. To further enhance learning efficiency, a novel
residual network has been designed, capable of attaining
remarkable identification with only 0.579M parameters.

2) The redundant information presents a significant chal-
lenge to the DEI efficiency. We develop novel FFSFNet
to extract the multi-scale RFF characteristics embedded
in non-stationary waveform. This brings a substantial
redundantly reduction, thereby significantly improving
learning efficiency, diminishing reliance on computing
resources and enhancing model interpretability during
the training process.

3) Furthermore, to tackle memory and computing resource
constraints during practical deployment, we conducted a
comprehensive comparative analysis of various quantiza-
tion schemes and validated with FPGA accelerator. Ex-
perimental results demonstrate that FFSFNet can main-
tain up to 99.4% identification accuracy by only utilizing
about 5.08% of original samples among 35 different
nodes within heterogeneous IoV network. Model quan-
tization can effectively reduce model size and inference
latency with minimal performance degradation.

C. Organization
The remainder of our paper is organized as follows. In

Section II, the signal structure, preprocessing and basic prin-
ciples of wavelet scattering network are discussed. Then, the
architecture of proposed deep fractional wavelet scattering
network is discussed in Section III. Furthermore, the proposed
deep federated fingerprinting framework based on fractional
wavelet scattering network is presented in Section IV-A. In
Section V, we introduce the detailed experiment setup and
remarkable experimental results. Finally, the representative
conclusion is drawn in Section VI.

II. SYSTEM MODEL

A. Signal Structure and Preprocessing for Heterogeneous IoV
Network

In this section, we explore the waveform characteristics
of two distinct signals that have been gathered: LoRa which
utilizes the chirp modulation and orthogonal frequency divi-
sion multiplexing (OFDM). Our emphasis will be specifically
directed towards an in-depth investigation of the mechanism
involved in RFF characteristics generation within these two
different waveform. Firstly, a complete LoRa signal consists
of three parts: preamble, delimiter and payload symbols which
are modulated by the linearly frequency. Then, the modu-
lated signal is processed by digital-to-analog converter and
a matched power amplifier. At time t it can be represented as:

xL(t) = Aej2π(ωmin+
1
2 τt+∆ω)t (0 ≤ t ≤ T ), (1)

where A represents the amplitude, ωmin is the minimum
operating frequency which equals to −B

2 . Additionally, B
represents the operating bandwidth and the working band
range can be denoted as [−B

2 ,
B
2 ]. Besides, T denotes the

symbol duration and τ = B
T represents the frequency sweep

rate. Furthermore, ∆ω denotes the specific frequency offset.
For ease of representation, we discretize the original signal
and the received can be expressed as:

yL (n) = HL ∗ IL (xL(n)) +NL, (2)

where HL represents the channel, IL denotes the hardware
impairments and NL represents the channel noise. OFDM em-
ploys multi-carrier modulation, allocating multiple orthogonal
sub-carriers in frequency domain to achieve high throughput
transmission. The k-th data symbol resulting from bit stream
modulation is denoted as F (i). Then, the inverse fast Fourier
transform (IFFT) of the frequency signal can be expressed as:

xO(n) =
1

M

M−1∑
i=0

F (i)ej2πin/M 0 ≤ n ≤M − 1, (3)

where n denotes the discrete samples index. Furthermore,
frequency and phase mismatches between transmitter and
receiver lead to CFO and phase offset. The received signal
can be expressed as:

yO(n) = HO ∗DO(xO (n)) +NO, (4)

where DO denotes the non-linear RF characteristics, HO

represents the wireless channel, NO denotes the system noise
which also satisfies the Gaussian distribution. In summary,
despite significant variations in modulation and transmission
methods between LoRa and OFDM, they pass through the sim-
ilar RF modules and all the corresponding RFF impairments
characteristics have been embedded into the waveform.

B. The Basic Principles of Wavelet Scattering Network

In numerous situations, the characteristics of signal ex-
hibit significant variations across time and spatial dimensions.
These variations are often compounded by noise and de-
formation, which pose challenges to effective RFF features
extraction and identification. The wavelet transform can be
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Wx(a, b) =
1√
a

utilized to its variable scaling and multi-resolution analysis.
Specifically, f or i nput s ignal x (t) t hat a re c ontinuous o ver a
finite t ime i nterval, t he wavelet t ransform can be defined as∫

R
x(t)ψ∗(

t− b√
a
)dt, (5)

where a and b serve to adjust the wavelet’s scale and its
temporal shift along the time axis t, respectively. The mother
wavelet ψ(t), upon undergoing transformations via a scaling
parameter j and a rotation parameter z, yields a collection of
wavelet sets characterized by varied scales and orientations as
follows

ψλ(u) = 22jψ(2jz−1u), (6)

where λ = 2jz signifies the composite parameter in the
wavelet transform, encapsulating both scale and rotation de-
tails. Wavelet filter banks excel in dissecting and seizing both
information and energy across various scales and directions
from a given signal. The convolution between these filters and
x(t) fundamentally can be defined as a process of features
extraction.

R′[λ]x = |x(t) ∗ ψλ|, (7)

where R′[λ] denotes the modulus operator. Besides, ∗ rep-
resents the convolution operation. Subsequently, through the
convolution of the wavelet modulus coefficients with the scale
function ϕ(t), we are able to distill the low-frequency elements
of the signal. This process yields the translation-invariant
scattering wavelet coefficients.

O′[λ]x = |x(t) ∗ ψλ| ∗ ϕ(t), (8)

where ϕ(t) denotes the scale function and O′[λ] denotes the
related calculation process. Considering that the low-frequency
part reflects the large-scale geometric characteristics of the
signal, it exhibits strong invariance to local changes such as
translation, rotation, and scaling. Therefore, we introduce a
low-pass filter ϕ(t) to extract the low-frequency components
of the signal, ensuring translational invariance and deformation
stability of the features.

During the wavelet scattering transform, operations involv-
ing modulus tend to emphasize low-frequency characteris-
tics while inadvertently diminishing high-frequency details.
To mitigate the loss of high frequency characteristics, the
transform employs iterative steps at elevated levels, incorpo-
rating additional modulus operations and low-pass filtering.
Throughout these iterations, the signal undergoes dispersion
across various scales and orientations via distinct paths. Upon
reaching the k layer, this calculation process can be denoted
as follows

O′
k−1x(u, λ1, ..., λk−1) = |...||x ∗ ψλ1

| ∗ ψλ2
|... ∗ ψλk−1

|
∗ ϕJ(t)
= R′

k−1x(u, λ1, ..., λk−1) ∗ ϕJ(t),
R′

kx(u, λ1, ..., λk) = |...||x ∗ ψλ1 | ∗ ψλ2 |... ∗ ψλk
|

= R′
k−1x(u, λ1, ..., λk−1) ∗ ψλk

,
(9)

where R′
k denotes the high frequency coefficients calculation

path of k layer. It can be found from (9) that the scattering

network establishes a unique form of hierarchical convolu-
tional network by sequentially employing complex wavelet
operators and modulus operations. This approach ensures
that the translation-invariant coefficients O′

k which can be
calculated layer by layer. Concurrently, the wavelet modulus
coefficients R′

k, can be relayed to the subsequent layer of
the network for additional processing, thereby enhancing the
accurate and robustness of feature extraction.

III. THE ARCHITECTURE OF DEEP FRACTIONAL
SCATTERING NETWORK

A. The Basic Principles of Fractional Wavelet Transform

The fractional Fourier transform (FRFT) facilitates the
transformation of time series signals into the Fourier domain.
For a d-dimensional signal, the FRFT is mathematically de-
fined as follows:

Xα(τ) = Fα{x(t)}(τ) ≡
∫
Rd

x(t)Qα(τ, t)dt, (10)

where Qα(τ, t) =
∏d

i=1 Qαi
(τi, ti), and

Qαi(τi, ti) =


Pαi

ej
τ2
i +t2i
2 cotαi−jtiτi cscαi , αi ̸= nπ,

δ(ti − τi), αi = 2nπ,

δ(ti + τi), αi = (2n− 1)π,
(11)

where αi denotes the fractional rotation angle. Besides, Pαi =√
1−j cotαi

2π represents the corresponding fractional sacle fac-
tors and n ∈ Z. Specifically, when the fractional rotation angle
αi = π/2, the FRFT simplifies into the classical Fourier
transform (FT). Therefore, FRFT can obtain the fractional
components of input signal, offering a flexibility surpassing
that of conventional FT. However, the FRFT obscures the
time-varying aspects of signals by integrating across the entire
time axis, thus failing to capture the spectrum information
within localized time windows. Fortunately, fractional wavelet
transform (FRWT) can maintain the local time-frequency
characteristics of signals. For any signal x(t) ∈ Rd, the d-
dimensional FRWT can be defined as

Wα
x (λ, t) =

∫
Rd

x(τ)ψ∗
α,λ,t(u)du, (12)

where the d-dimensional fractional wavelet kernel function is
detailed as

ψα,λ,t(u) =
1√
|λ|d

ψ

(
u− t

λ

)
e−j

uΩ0u−tΩ0t
2 , (13)

where λ and t denote the scale and time shift, respectively. The
FRWT across various scales equivalent to the application of
band-pass filters. Notably, when α = π/2, the FRWT convert
into the traditional wavelet transform (WT). The rotation angle
α is a key parameter in the fractional wavelet characteristics.
An appropriate α can improve the distinguishability of RFF
scattering coefficients. During the experiment, this critical
hyperparameter α = π/4 was selected through multiple pa-
rameter evaluations to extract the scattering coefficients. This
parameter affects the characteristics of fractional wavelet basis
function and also impacts the scattering coefficients which
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Fig. 3. The architecture of fractional wavelet scattering network.

contain RFF features. Therefore, it is essential to perform
grid search or Bayesian parameters selection optimization in
practical applications. This ensures that the fractional wavelet
scattering network can effectively represent RFF features,
thereby improving the model’s performance.

B. The Architecture of Fractional Wavelet Scattering Network

In the analysis of the multidimensional x(t), we introduced
FRWT to capturing the non-stationary signal’s variation char-
acteristics across distinct orientations. This enhancement en-
tails two pivotal steps: firstly, the orientation of each individual
fractional wavelet ψ(t) is modified using a rotation factor zn;
secondly, scale 2q is utilized to appropriately scale the rotated
wavelets. By integrating the dual principles of directionality
and scaling, the signal can be accurately analyzed in mul-
tiple directions with various scales. The discrete fractional
directional wavelets can be denoted as ψα,λq,n,t(u), where
λq,n = 2qzn represents the combination of rotation and scale
adjustment. Therefore, the calculation process of FRWT can
be equivalent to a special set of filters which can decompose
the signal into detailed and the general parts. More specifically,
the signal’s low-frequency components of x(t) can be obtained
with 2J and the related calculation process can be denoted as

Qα,Jx(t) = x(t) ∗α ϕ2J (t), (14)

where Qα,Jx(t) represents the basic general low-frequency
components. Besides, ϕ2J (t) denotes the fractional scale func-
tion endowed with low-pass attributes and can be defined by

ϕλJ
(t) ≡ 1

|λJ |d
ϕ

(
− t

λJ

)
, (15)

Furthermore, the signal’s high-frequency components which
obtained with scale 2q ≤ 2J represents the detailed character-
istics and can be denoted as

Wα,x(λq,n, t) = x(t) ∗α ψλq,n
(t), 1 ≤ n ≤ N, (16)

where ψλq,n
(t) ≜ 1

|λq,n|d
ψ∗

(
− t

λq,n

)
encapsulates the

fractional wavelet’s extraction capability for high-frequency
characteristics. Besides, Wα,x(λq,n, t) represents the high-
frequency detailed characteristics. The potential minor transla-
tions within the signal complicates its practical application. To

address the issue and maintain relative translational invariance,
the modulus operation is proposed and can be defined as

R[λ]x(t) = |Wα,x(λq,n, t)| = |x(t) ∗α ψλq,n
(t)|, (17)

where R denotes the complete modulus operation. Further-
more, the nonlinear coefficients are subsequently filtered by
ϕ2J (t) to harness non-zero translational invariance which can
be represented as

O[λ]x(t) = |Wα,x(λq,n, t)| ∗α ϕ2J (t)
= |x(t) ∗α ψλq,n

(t)| ∗α ϕ2J (t),
(18)

where O denotes the calculation operator with multi-scale
filters. It can be found that the structure of fractional wavelet
scattering transform is extremely similar to deep convolutional
networks. By conceptualizing this structure as a fractional
wavelet scattering network, we can find that it not only inherits
the hallmark features of traditional scattering networks, such
as translational invariance and stability to deformations, but
also suitable for non-stationary signal analysis. As shown
in Fig. 3, the every path of FFSFNet can be denoted as
p(k) = (p

(k)
1 , p

(k)
2 , ..., p

(k)
k ). Where the k represents the cor-

responding maximum path length and the coefficients of kth
can be denoted as

Rα[p(k)]x(t) = Rα[p
(k)
k ] · · ·Rα[p

(k)
2 ]Rα[p

(k)
1 ]x(t)

=
∣∣∣. . . ∣∣∣∣∣∣x(t) ∗α ψp

(k)
1

(t)
∣∣∣ ∗α ψp

(k)
2

(t)
∣∣∣ . . . ∗α ψp

(k)
k

(t)
∣∣∣ , (19)

where p(k)i = 2qizn(qi ≤ J, 1 ≤ i ≤ k) represents the scale
and rotation parameters of the fractional wavelets. Following
the Rα[p(k)]x(t), applying the low-pass filter ϕ2J (t) yields
the k th level output coefficients Oα[p(k)]x(t) as

Oα[p(k)]x(t) = Rα[p(k)]x(t) ∗α ϕ2J (t), (20)

where k denotes the layer of fractional wavelet scattering
network and Oα[0]x(t) = x(t) ∗α ϕ2J (t) represents the low
frequency characteristic of input signal. Fig. 3 illustrates the
architecture of a fractional wavelet scattering network with
three different levels. Within this architecture, the original
input signal x(t) goes through a series of level-wise pro-
cessing, generating fractional order wavelet scattering coef-
ficients Oα[p(k)]x(t) for different levels k = 0, 1, 2 which
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(a)

(b)

Fig. 4. The STFT and various fractional coefficients of different scattering
layers. (a) Type1-6 nodes: STFT, 1-th fractional wavelet coefficients, 2-th
fractional wavelet coefficients (left, middle, right); (b) Type7 nodes: STFT,
1-th fractional wavelet coefficients, 2-th fractional wavelet coefficients (left,
middle, right).

constitute the output of scattering network and form a sample.
Furthermore, the fractional wavelet transmission coefficients
Rα[p(k)]x(t) from one layer serving as the input for subse-
quent layer. Specifically, the first layer outputs the fractional
scattering coefficients Oα[P (0)]x(t) and the fractional wavelet
transmission coefficients Rα[P (1)]x(t) can be calculated by

Oα[P (0)]x(t) = Rα[P (0)]x(t) ∗α φ2J (t) = x(t) ∗α φ2J (t)

Rα[P (1)]x(t) = {
∣∣∣x(t) ∗α ψ

p
(1)
1
(t)

∣∣∣}p(1)
1 ∈Ω

,

(21)
where Ω = {λq,n = 2qzn|2q � 2J , 1 ≤ n � N} encompasses
all feasible scale-orientation combinations of the fractional
wavelets. For k-th layer of network, both the fractional wavelet
transmission coefficients Rα[P (k)]x(t) and the scattering co-
efficients from the preceding layer Oα[P (k−1)]x(t) to be
output are denoted as

Rα[P (k)]x(t) = Rα[p
(k)
k ]Rα[P (k−1)]x(t), ∀l(k) ∈ Ωk

Oα[P (k−1)]x(t) = Rα[P (k−1)]x(t) ∗α φ2J (t),
(22)

Through this approach, the network can process the signal
in a hierarchical manner, extracting the signal’s fractional
wavelet scattering coefficients which contains the related RFF
features layer by layer. According to the principle of energy
conservation, as the number of layers m in the fractional
wavelet scattering network increases, the energy of network
transmission signal will gradually decrease and eventually
approach zero [49]. Energy is retained in the scattering co-
efficient of the different layers’ output. It can be observed
from (22) that when the number of network layers n is
greater than or equal to m, the energy Oα[P (k−1)]x(t) of
the fractional scattering network will also tend to zero. This
indicates that the depth of fractional scattering network can be
controlled within a certain range, and the signal’s energy and
information loss can be considered negligible.

As illustrated in Fig. 4, the short-time Fourier transform
(STFT) and the fractional wavelet scattering coefficients across
various layers are presented. Specifically, the STFT spectrum
for the first type of node is displayed on the left in Fig. 4(a),
highlighting the evolution of signal frequency over time. Here,
the intensity of the color signifies the energy magnitude.
The middle diagram of Fig. 4(a) showcases the distribution
of first-level scattering coefficients, represented as a circular
ring divided into different sectors which denotes a specific
frequency range. The right diagram presents the distribution
of the second layer scattering coefficients, offering a more
detailed frequency segmentation. Similarly, Fig. 4(b) presents
the STFT and scattering coefficients for another type nodes
in an analogous fashion. In the first layer of the scattering
network, frequencies organize into a circular structure at
a distinct scale 2j1 , termed as binary ring. Where the j1
represents the scale factor in the fractional wavelet, which is
primarily responsible for scaling the fractional wavelet basis
function to varying degrees. This configuration is subdivided
into multiple sectors, each characterized by a unique rotational
angle z1 which denotes the different rotation directions and
fractional wavelets ψ(u) can be rotated by different rotation
factors z1. Besides, Ω represents different quadrant regions,
indicating different frequency domain positions, and is related
to the scale factor 2j1 , as shown in Fig. 4 for different
dyadic annuli Ω[2j1z1]. For exploring the second layer, it
not only referred to the scale and direction of the primary
level, but also further divided the fan shapes of the primary
level. Furthermore, these quadrants are divided into rotating
sectors according to the angle vector, forming a more refined
sector which can be denoted as Ω[2j1z1, 2

j2z2]. In summary,
the scattering network can be utilized to refine frequency
partitioning from various levels, while capturing the multi-
scale nature of complex signals.

C. The Deformation Stability of Fractional Wavelet Scattering
Network

It should be emphasized that wireless signals are inevitably
affected by noise during transmission which may cause certain
deformations and impact the RFF characteristics extraction.
It is imperative for fractional wavelet scattering network
to accommodate these fractional deformation which can be
defined as

T α
ε x(t) = x(t− ε(t))e−jε(t)(t− ε(t)

2 ) cotα, (23)

where T α
ε represents the corresponding operator and ε(t)

denotes the fractional deformations. If α = π/2, the defor-
mations will degenerate into traditional forms.

Tεx(t) = x(t− ε(t)), (24)

Furthermore, under the assumption of existing a constant L
and any signal x(t) ∈ L2(Rd) satisfying deformation gradient
|| � ε||∞ ≤ 1/(2d), the specific error caused by fractional
deformations can be limited within an acceptable range and
can be denoted as

‖Oα[P ]T α
ε x−Oα[P ]x‖2 ≤ LΓα(ε) ‖Rα[P ]x‖2 , (25)
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where Γα(ε) quantifies the deformation constraint and defined 
as following

Γα(ε) ≜2−J∥ε∥∞ +
(
J∥∇ε∥∞ +

∥∥∇2ε
∥∥
∞

)
δα−π

2

+
(
∥∇ε∥∞ + 2

√
2
(
1− δα−π

2

)
,

(26)

where δα−π
2

denotes a adjustment factor which only contains
two different factors [0,1]. When the α = π/2, the δα−π

2
= 1

and all other cases are 0. Stability is crucial for fractional
wavelet scattering networks, especially when dealing with
deformed signals. By controlling negative effects within spec-
ified limits, fractional wavelet scattering network demonstrate
robustness against subtle deformation.

IV. THE PROPOSED EFFICIENT DEEP FEDERATED
FINGERPRINTING FRAMEWORK

A. The Architecture of Deep Federated Framework for Fin-
gerprinting

In the heterogeneous architecture of the IoV, we categorize
a myriad of intelligent nodes into distinct groups, illustrated
in Fig. 2. Each group can be treat as an operational unit,
inherently unable to engage in centralized data collection and
model training. To address this, federated learning is involved
to achieve the distributed learning among the different nodes
and without aggregating the data to any central server. Within
this architectural paradigm, the federated averaging (FedAvg)
scheme serves as a core strategy and can be characterized as:

min
w

f(w) =

N∑
i=1

piFi(w) = Ei[Fi(w)], (27)

where pi represents the probability of client i being selected.
Besides, Fi() is the local objective function defined on client
i and N is the number of clients. Furthermore, w is the global
model weight value, each client performs computing tasks
locally to optimize its local objective function Fi(w), while
contributing to the global model.

However, the various groups of clients, as depicted in Fig. 2
face varying computational and resource constraints due to
hardware and network differences. The FedAvg algorithm,
requiring consistent local updates from all clients, overlooks
the limitations of less capable nodes. We address this by intro-
ducing the FedProx, which adds a proximal term σ

2 ∥w−wt∥2,
penalizing deviations from the global model to ensure that
local updates remain closely aligned with the global.

min
w
yi(w; w

t) = Fi(w) +
σ

2
∥w − wt∥2, (28)

where σ
2 ∥w−wt∥2 penalizes the discrepancy between client’s

model w and the global model wt. Besides, σ is a non-negative
parameter adjusting the penalty level which can control the
distance between local and global model. In our practical
implementation, we set µ = 0.5, determined through a grid
search method. The additional proximal term ∥w − wt∥2 can
effectively limit the impact of deviated local updates, thereby
reducing fluctuations in global model performance. Although
this proximal term may lead to a temporary decrease in model
accuracy for some clients, as their updates are no longer solely
optimized based on their own data, it helps maintain the

stability and consistency of the global model from a global
perspective. More importantly, by suppressing inconsistent
local updates, the proximal term significantly improves the
learning efficiency of the system when handling distributed
heterogeneous data, thereby optimizing the overall perfor-
mance of the federated learning system. To address the local
optimization, we introduce the θti-inexact solution, allowing
clients to aim for an approximate rather than an exact optimal
solution. Specifically, in tackling the local problem (28), it is
sufficient to find an θti-inexact solution ŵ, that it satisfies the
following criteria:∣∣∣∣∇yi(ŵ; wt)

∣∣∣∣ ≤ θti
∣∣∣∣∇yi(w; wt)

∣∣∣∣ , (29)

where θti acts as a relaxation factor within the range [0, 1], set-
ting the tolerable limit for gradient inaccuracy. The proposed
FedProx schemes proceeds as follows: the server randomly
selects K clients from a total of N and forms a subset Ωt.
The server then sends the current global weights wt to these
selected clients. Each client i employs stochastic gradient
descent (SGD) to update the model locally. Then, the updated
model weights can be denoted as

wt+1
i = wt

i − λ1∇yi(w; wt), (30)

where ∇yi(w; wt) = ∇Fi(w) + σ(w − wt) denotes the
gradients update, λ1 represents the client learning rate and
wt+1

i is an θti-inexact solution that satisfies (29). Upon com-
pletion of the local updates, each client sends their updated
model gradient ∇t

i back to the server. Subsequently, the server
aggregates these gradients by calculating their average from all
clients. This aggregated gradient is then utilized to update the
global model’s gradient.

∇t =
1

K

∑
i∈Ωt

∇t
i, (31)

where ∇t denotes the global updates. The server proceeds to
update the weights by employing the Adam optimization.

wt+1 = wt + λ2
vt√
zt + ε

, (32)

where λ2 represents the global learning rate, and ε is a very
small fixed values to avoid division by zero. Momentum vt

and second moment zt can be expressed as:

vt = ξ1v
t−1 + (1− ξ1)∇t,

zt = ξ2z
t−1 + (1− ξ2)∇2

t ,
(33)

where ξ1 and ξ2 are the decay rates of the gradient and its
square respectively. Considering the practical performance, we
employed the recommended values ξ1 = 0.9 and ξ2 = 0.999
during our experiment [62]. In this way, the proposed scheme
can coordinate model training on multiple devices and ulti-
mately summarize a globally optimized model efficiently.

B. The Architecture of Designed Models

As depicted in Fig. 5, we introduce ResNet-1d alongside
other benchmark models. In Fig. 5(a), the ResNet-1d archi-
tecture initiates by convolving the input with 64 linear filters
of size 7×1, aiming to capture feature information across
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Fig. 5. The architecture of proposed ResNet-1d and other benchmark models.

various temporal scales. Furthermore, increasing the filter size
(17 × 1 or 70 × 1) can cover a longer span, potentially
capturing features over a longer scale and better capturing
lower frequency information. However, this may overlook
some high-frequency details, causing the model to miss subtle
features. Additionally, larger filters require more computing re-
sources and significantly longer training times. Subsequently,
this architecture incorporates two distinct residual structures:
the ID Block and the Conv Block. The ID Block comprises
two convolutional layers of size 3×3 and an additional additive
unit that directly merges the input with the output. In contrast,
the Conv Block employs our additive module, which combines
the convolutional result of the input with output. Each Conv
Block is followed by a ReLU activation function to mitigate
common issues related to gradient vanishing. If Conv Blocks
and ID Blocks are not alternately cascaded, the model may
become deeper but harder to train, posing a risk of gradient
vanishing or exploding. Alternating ConvBlocks and IDBlocks
balances feature extraction and critical information transmis-
sion, improving training effectiveness and model performance.

As illustrated in Fig. 5(b), the VGG16-1d also embraces
one-dimensional data input and adeptly handles samples via 5
sets of convolution layers with varying depths. Commencing
from the input layer, the network initiates feature extraction
employing a sequence of convolutions with progressively in-
creasing kernel sizes. ReLU activation and batch normalization
layers are applied to augment the model’s non-linearity and
stability. Ultimately, the 35x1 fully connected and softmax
layer are utilized to output the final decision. As shown in
Fig. 5(c), the multilayer perceptron (MLP-1d) consists of
straightforward yet versatile fully connected neural network
model comprising 10 distinct Dense layers. The model initiates
from a higher dimension size, progressively diminishing to 35,
enabling it to acquire intricate RFF features from the input.
Furthermore, ReLU activation layer is applied to introduce
nonlinearity, while the Softmax layer is utilized to produce
the ultimate classification probabilities.

C. Network Model Quantification and Acceleration

With the advancement of AI and models deployment, DEI
has emerged as a critically important potential application
architecture. However, the deployment of models at the edge
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Fig. 6. The architecture of typical data collection system which is utilized to
acquire the large-scale RF raw data.

is hindered by constraints such as limited storage, memory,
power consumption and latency, as these models typically
demand substantial computing resources. Model quantization
represents a pivotal technique in addressing these challenges.
It reduces the model size and power consumption while main-
taining performance by converting the model’s high-precision
floating-point weights into lower precision floating-point or
fixed-point. However, careful optimization is necessary during
the quantization process to minimize accuracy loss, which
adds complexity to the procedure. The activation function
enhances the model’s ability to capture nonlinear characteris-
tics, crucial for learning complex functions. Thus, accurately
quantizing the activation function is essential to preserve the
accuracy. Model quantization comprises two primary compo-
nents: weight and activation quantization. Given the distinct
architecture of distributed training, this study employs a post-
quantization training strategy. The global model’s weights wt

initially maintain 32-bit floating-point and will be converted
into an m̄-bit integer.

w̃t
i,j,n = R

(
Sw,m̄

(
wt

i,j,n −min
(
wt

)))
, (34)

where Sw,m̄ represents the corresponding scaling factor, which
determines the quantization of floating-point precision to the
corresponding m̄-bits integer and can be annotated as

Sw,m̄ =
2m̄ − 1

max (wt)−min (wt)
, (35)

To optimize quantization accuracy of the activation function,
one could increase the bit width of the activation functions,
followed by re-quantizing these results to a predetermined
bit width. Moreover, the presence of outliers in the acti-
vation function’s output may expand the quantization range
excessively and degrade the quantization accuracy within the
effective range. To address this issue, using an empirical
moving average (EMA) can effectively manage these outliers,
ensuring more stable quantization outcomes [63]. In summary,
model quantization is designed to minimize model size, re-
duce memory requirements, and enhance inference efficiency.
However, it is important to note that these benefits may be
accompanied by potential reduction of the model accuracy,
impacting inference performance to some extent.

V. EXPERIMENT SETUP AND RESULTS ANALYSIS

A. Experiment Setup

In this paper, we have developed a data collection system
specifically engineered to capture large-scale RF raw samples.
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TABLE I
LABELS OF IOV NODES.

Nodes
Label

Training Dataset
Type1 Nodes 1, 2, 3, 4, 5
Type2 Nodes 6, 7, 8, 9, 10
Type3 Nodes 11, 12, 13, 14, 15
Type4 Nodes 16, 17, 18, 19, 20
Type5 Nodes 21, 22, 23, 24, 25
Type6 Nodes 26, 27, 28, 29, 30
Type7 Nodes 31, 32, 33, 34, 35

This system collects various raw signal samples from 35
different nodes, as detailed in Table I. As depicted in Fig. 6,
the datasets includes two different classes of terminals. The
first class of terminals includes type 1-6, each with five
distinct nodes. As illustrated in Fig. 6, includes a series
of components integral to signal processing: IQ modulator,
filter, digital-to-analog converter (DAC) and power amplifier
(PA). As the signal passes through these different modules,
RF impairments are involved to the original waveform. To
ensure thorough data collection, parameters are meticulously
configured prior to channel filter selection. Upon receipt of
a physical uplink shared channel signal from the terminal,
the receiver captures demodulation reference signal symbols.
The intermediate frequency of the collected signal is set at
140 MHz, with additional wireless subcarriers spaced around
this central frequency. Complete frequency information is
achieved with a sampling rate of 122.88 MHz, covering a
frequency range from 17.7575 to 19.3625 MHz, where each
subcarrier spans a bandwidth of 15 kHz. The second class
of terminals which includes type7 consisting of five distinct
LoRa nodes. The complete LoRa packet structure comprises
three main components: preamble, start frame delimiter (SFD)
and effective data. The preamble is crucial for synchronizing
and marking the start of frame, although it does not convey
any substantive information. Despite the expectation that LoRa
devices have identical preamble structures, minor hardware
variations can cause slight, often unintentional, errors in the
preambles of different nodes. At the receiver’s end, the GNU
Radio’s file sink module is utilized to extract these preambles
from the LoRa frames received by a USRP B210 1.

Furthermore, the extensive raw samples gathered from the
35 different nodes of these two class is processed by a frac-
tional wavelet scattering network to create the RFF datasets for
subsequent analysis. Each node includes 5000 training samples
and 200 testing samples. During our experiment, we have
configured the scattering network parameters scale factors J ,
rotation factors Q, fractional factors a, b and corresponding
network layers k according to the performance evaluation.
Considering the practical deployment, the network layers is
set as k = 2. As for the model parameters configuration,
the learning rate is set to 0.0001, the batch size is 150, and
the number of training epochs is 200 for centralized model
learning. Within the distributed federated learning framework,

1https://github.com/tapparelj/gr-lora sdr

Fig. 7. The accuracy performance of different training samples and a, b with
ResNet-1d j = 4, L = 8.

Fig. 8. The accuracy performance of different training samples and a, b with
ResNet-1d j = 3, L = 6.

the learning rate of clients is set as 0.0001, and the global
learning rate is set to 0.9. Ultimately, all those experiments
were conducted on a Supermicro server equipped with 8
NVIDIA RTX 3090 Ti GPUs and 512 GB of RAM. To
maximize the utilization of computing resources, we utilized
2 GPUs in parallel for each training session to complete the
model’s training and testing.

B. The Performance Impacts of Different Fractional Scatter-
ing Parameters

The parameterization of fractional wavelet scattering net-
works mainly involves the settings of wavelet filters and the
optimal fractional orders. The experimental results, as illus-
trated in Fig. 7 and Fig. 8, highlight the effects of adjusting the
scale size J and rotational angle L. In practical applications,
the basic principle for selecting these two parameters is based
on the length and directional characteristics of the input signal.
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Specifically, Fig. 7 employs settings of J = 4 and L = 8,
while Fig. 8 corresponding to J = 3 and L = 6. These
results demonstrate how the volume of training samples affects
accuracy and evaluate the impact of different fractional order
parameters including J , L, a and b. The findings confirm that
testing accuracy decreases with a reduction in the number of
training samples, regardless of the parameter configurations.
Particularly, with the fractional parameters J = 4, L = 8,
a = 0.3 and b = 1 yielded the best performance and
higher stability, indicated by a smaller variance in the shadow
area. In contrast, with the settings of J = 3 and L = 6,
while the trend in testing accuracy was similar to that of
J = 4, L = 8, various combinations of fractional parameters
showed slightly different performances. Notably,the accuracy
differences among different combinations of a and b are
minimal with larger training samples. Furthermore, compared
to Fig. 7, the larger variance shadow area in Fig. 8 indicates
more significant result volatility. While larger J and L will
bring larger network and scattering coefficients which may
not bring better performance. It is crucial to select parameters
according to the signal characteristics, optimal performance
and computational efficiency. In conclusion, the experimental
results emphasize that the optimal parameterization for the
fractional orders a = 0.3 and b = 1, along with wavelet filter
settings of J = 4 and L = 8, allows the wavelet scattering net-
work to extract RFF features with higher separability, thereby
achieving superior performance in practical application.

As illustrated in Fig. 9, we have conducted representative
experiments to validate the identification accuracy perfor-
mance of different models trained with varying numbers of
slicenum. It can be found that when the training slicenum
size is large, there is only little difference in testing accu-
racy among all models. However, as the training slicenum
decreases, the performance gap between models begins to
significantly increase. MLP-1d Raw exhibits the largest per-
formance fluctuation range, with testing accuracy decreasing
from 95.13% to 20.44%, indicating a high dependency on the
training samples quantity. In contrast, MLP-1d FraScat, which
undergoes fractional-order wavelet transform for feature ex-
traction, significantly improves its performance with a reduc-
tion in sample quantity, especially with 50 training slicenums,
where its testing accuracy exceeds MLP-1d Raw by 31.76%.
VGG16-1d FraScat and ResNet-1d FraScat demonstrate better
stability and higher testing accuracy. Particularly, ResNet-1d
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Fig. 10. The average testing accuracy of different federated learning schemes
with 5000 training samples equal.

FraScat exhibits stronger learning efficiency and adaptability
to the slicenum decreasing, surpassing MLP-1d Raw and
MLP-1d FraScat by a significant margin, with a improvement
of 73.51% with 10 training samples. Notably, ResNet-1d
FraScat utilizes only 11.23% of the parameters compared to
VGG16-1d FraScat, and as training slicenum decreases, the
discrepancy in accuracy with the other three models gradually
widens, indicating its powerful generalization and efficient
learning ability. In summary, through comparative analysis of
the performance of different models in response to changes
in training sample quantity, ResNet-1d FraScat consistently
maintains the highest testing accuracy in all scenarios, partic-
ularly demonstrating outstanding learning capability, efficient
parameter utilization, and strong generalization ability when
handling small-scale datasets.

C. The Performance Analysis of Different Federated Learning
Schemes and Models

As illustrated in Fig. 10, the average testing accuracy of
ResNet-1d and MLP-1d under different federated learning
frameworks are presented. It can be found that with the
decrease of training slicenum, the average testing accuracy of
two models under centralized training and federated learning
shows a downward trend, but the centralized training maintains
an advantage in testing accuracy compared with federated
learning in both MLP-1d and Resnet-1d models. Besides, we
can see that the average testing accuracy of FedProx is higher
than that of FedAvg. FedProx enhances model convergence
stability and accuracy by introducing a proximal term based
optimization on top of the FedAvg update strategy. Notably,
as the training slicenum decreases, ResNet-1d shows a smaller
accuracy decrease, while MLP-1d experiences a substantial
decline. Particularly, the average testing accuracy of MLP-1d
under both federated learning schemes experiences a signif-
icant drop compared to centralized training. ResNet-1D can
effectively extract deep-level features of datasets with fewer
samples, thereby achieving better identification accuracy, and
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(a) ResNet-1d FedAvg Accuracy
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(b) ResNet-1d FedProx Accuracy
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(c) MLP-1d FedAvg Accuracy

0 50 100 150 200 250

Training Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e
s
ti
n
g
 A

c
c
u
ra

c
y

Slicenum=10

Slicenum=50

Slicenum=100

Slicenum=300

Slicenum=500

Slicenum=1000

Slicenum=3000

Slicenum=5000

(d) MLP-1d FedProx Accuracy
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(e) ResNet-1d FedAvg Loss
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(f) ResNet-1d FedProx Loss
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(g) MLP-1d FedAvg Loss
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Fig. 11. The testing performance of various federate learning schemes via different number of training samples.

demonstrating superior generalization capabilities under fed-
erated learning.

As depicted in Fig. 11, the testing performance of ResNet-
1d and MLP-1d networks under two federated learning frame-
work are illustrated. We present the real-time performance
of the aggregated models in terms of testing accuracy and
loss after each round of updates. Fig. 11(a)-(d) show steady
increase in testing accuracy of the aggregated models with
the increase of training epochs, while Fig. 11(e)-(h) demon-
strate the gradual decrease in the loss of the aggregated
models. Fig. 11(a), (b) display the real-time testing accuracy
of ResNet-1d under the two federated learning schemes, while
Fig. 11(c), (d) show the real-time testing accuracy of MLP-1d
under the same methods. It can be observed that despite the
poor training performance of both federated learning schemes
with 10 samples, FedProx generally outperforms FedAvg in
terms of accuracy across different network models. Fig. 11(a),
(c) illustrate the real-time testing accuracy of the two different
network models under the FedAvg learning scheme, whereas
Fig. 11(b), (d) depict the same under FedProx framework. No-
tably, ResNet-1d exhibits faster convergence and higher testing
accuracy across different slicenum, with a smaller decline in
testing accuracy observed for smaller slicenum. ResNet-1d
demonstrates superior feature extraction capabilities, leading
to better learning performance and generalization abilities.

As shown in Fig. 12, the confusion matrix and t-distributed
stochastic neighbor embedding (t-SNE) based RFF features
with ResNet-1d across different training slicenums are pre-
sented. It can be observed from Fig. 12(a) that there only a few
nodes occurs errors with ResNet-1d and 5000 heterogeneous
training slicenums. On the contrary, with the training sli-
cenums decrease to 1000, the identification accuracy for nodes
labeled as 2 is only 0.12 and the overall accuracy decreases
significantly compared to the performance of 5000 training
slicenums. Fig. 12(c)(d) visualize the RFF features extracted
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Fig. 12. Visualization of the confusion matrix and the t-SNE based RFF
features with ResNet-1d FedProx. (a) Confusion matrix with 5000 training
samples. (b) Confusion matrix with 1000 training samples. (c) The corre-
sponding normalized t-SNE based RFF features of (a). (d) The corresponding
normalized t-SNE based RFF features of (b).

by ResNet-1d after nonlinear dimensionality reduction using t-
SNE which is designed to explore high-dimensional structures,
for training slicenum of 5000 and 1000, respectively. t-SNE
is based on random neighborhood embedding and commonly
utilized in manifold learning for dimensionality reduction.
The core idea of t-SNE is to define a probability distribu-
tion over data samples in the high-dimensional space that
represents the similarity between different samples. Then, the
Kullback-Leibler (KL) divergence is employed to minimize
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(a) (b) (c)

Fig. 13. Visualization of the SHAP value via different model, parameters and training samples. (a) ResNet-1d, 5000 samples; (b) ResNet-1d, 10 samples; (c)
VGG16-1d, 5000 samples.

the divergence between these different distributions. t-SNE
requires careful optimization of several parameters, including
perplexity, early exaggeration, learning rate, iterations, initial-
ization, and random state. Among these, perplexity is related
to the number of nearest neighbors used in manifold learning
algorithms, with larger datasets necessitating higher perplexity
values. The learning rate helps the cost function avoid local
minima during global optimization. The random state deter-
mines the random seeds used during initialization, influencing
the local minimum and potentially leading to slightly different
final results. Consequently, random seed are generally fixed
during t-SNE execution. In Fig. 12(c), distinct clusters are
formed for each type of nodes, distinguished by different
colors and shapes, indicating the model’s high identification
capability. This suggests that ResNet-1d effectively captures
and distinguishes RFF features of different nodes with 5000
training samples. In contrast, as shown in Fig. 12(d), with a
reduced training slicenum of 1000, the boundaries between
clusters become blurred, and features of different nodes are
more mixed, indicating a decrease in the model’s feature
discrimination performance. This is consistent with the results
of confusion matrix. Under different sample sizes, devices
with identification errors are often misclassified as adjacent
nodes, suggesting that even with insufficient samples, the
model maintains a certain identification logic. Particularly, the
differentiation between different nodes is well demonstrated,
thanks to their significant differences in RFF features.

Fig. 13 illustrated the characteristics of SHAP values ob-
tained through different model parameters and training sam-
ples. It identifies the five most influential fractional-order scat-
tering coefficients on the model’s output along the y-axis and
quantifies their SHAP values on the x-axis which indicates the
extent of each coefficient’s impact on the model’s predictions.
Furthermore, we utilize different color to delineates the nature
of impact: red for positive and blue for negative influences.
Specifically, Fig. 13(a) and (b) present the SHAP values of
coefficients within the ResNet-1d model, trained with 10 and
5000 samples, respectively. It is clear that fractional scattering
coefficients numbered 4 and 36 maintain significant SHAP
values regardless of the training samples, underscoring their
essential role in the decision-making process of the ResNet-
1d model. Conversely, Fig 13(c) demonstrates that the SHAP
values for VGG16-1d model with 5000 training samples,
revealing distinct key features and impacts, attributable to
differences in model architecture and training parameters.
These results underscore the pivotal role of fractional scat-

tering coefficients in elucidating the interpretability of models
architecture for specific tasks.

D. The Performance Analysis of Different Model Quantization
Schemes and Practical Evaluation Based on FPGA Accelera-
tor

Traditionally, model deployment applications predominantly
utilize 32-bit float point precision on universal server platforms
to deliver external services. However, within the DEI frame-
work, constraints such as limited computational resources,
energy usage, and storage capacity preclude the support of
full precision model operations. Current heterogeneous edge
computing nodes often employ customized ARM or FPGA
units to expedite edge computing tasks. Consequently, adapt-
ing traditional, comprehensive models for deployment on these
distributed edge nodes to offer immediate services poses a
significant challenge in the distributed computing landscape.

Quantization-aware training (QAT) and post-training quan-
tization (PTQ) are two distinct approaches to achieve the
model quantization. PTQ is an efficient method for quantizing
without requiring retraining. It converts the model weights
and activation functions obtained after training from floating-
point numbers to lower precision. PTQ mainly includes three
different types: float16, dynamic range, and integer quantiza-
tion. PTQ allows the quantization process to be conducted
independently after training, without affecting the training
process. This makes PTQ particularly suitable for scenarios
requiring rapid deployment or model updates, as it quickly
reduces the model’s storage and computational requirements
without retraining. Additionally, PTQ does not require labeled
training data, thereby reducing the complexity and cost of
data preparation. QAT embeds quantization constraints within
the model’s training phase, enabling tailored quantization
processes for different layers to more effectively address
the accuracy challenges inherent in model quantization. For
instance, pseudo quantization nodes may be introduced to
analyze the distribution characteristics of model data and
provide feedback on quantization-induced accuracy loss. Such
nodes simulate the accuracy loss associated with lower bit
quantization, incorporating this loss into the network model
and feeding it into the loss function. This allows the optimizer
to specifically target and minimize this loss during the training
process. In this process, all calculations, including forward and
backward propagation and pseudo-quantization node calcula-
tions, are performed using floating-point arithmetic. The model
is quantized into the true integer format only after training is
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Fig. 14. The architecture of quantified model deployment including optimizer, quantizer and compiler.
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Fig. 15. The average testing accuracy of different network models and
quantization schemes with 5000 training samples.

completed. Although QAT can better adapt to the losses caused
by quantization, it has a higher computational cost, requiring
more training time and resources, and relies on complete
labeled training data. This dependence on labeled data can
be a limiting factor in situations where data acquisition is
challenging. As depicted in Fig. 14, PTQ involves pruning and
fine-tuning the model to optimize its structure after the model
learning convergence has been achieved. This process includes
quantization parameters configuration for different layers to
produce the final int8 quantization model. To deploy this
quantized model on data processing unit (DPU) accelerator,
parser is utilized to optimize and generate object code in the
.xmodel format which is suitable for deployment on the DPU
cores. Moreover, to improve the accuracy and robustness of
quantized model, a calibration dataset is employed to capture
activation statistical data. Given the computational complexity
and distributed nature of federated learning, our paper presents
a construction and comprehensive evaluation of PTQ model.

Given the variability in accuracy losses associated with dif-
ferent quantization techniques, we performed a comprehensive
comparative analysis of how various quantization methods
impact the performance of different models. As illustrated
in Fig. 15, we evaluated the performance disparities among
different models with 5000 samples across five different quan-
tization schemes: TF No, TF-float16, TF-dynamic-range, Vitis-
int8, and FPGA-int8. It is clear that the accuracy degradation
from TF-float16 is minimal across three different models, with
virtually no performance deterioration observed. As a result,
this approach effectively reduces the model size while preserv-
ing near-original model performance. To facilitate dynamic
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Fig. 16. The model size comparison of different quantization schemes.

adjustment of model quantization range during optimization,
we implemented the TF-dynamic-range in our experiments.
As shown in Fig. 15, the experimental results indicate that
dynamic optimization preserves high identification accuracy
for the ResNet-1d and VGG16-1d models.

However, as for the MLP-1d model, Vitis-int8 and TF-
dynamic-range quantization strategy may lead to a significant
decline of approximately 71.34% and 27.31% compared to
TF-No. The primary challenge with dynamic quantization,
particularly evident in the MLP-1d model, is its dependence
on an appropriate dynamic range. The absence of a suitable
batch normalization layer in the MLP-1d model impedes
effective global optimization during the dynamic quantization
process. To deploy these models on a DPU, we employed Vitis
tools to achieve int8 quantization and optimization for model
deployment towards FPGA. It can be found that identification
performance significantly declined across all models with int8
quantization. This decline primarily stems from the limited
parameter bit width during the optimization process and the
inability to customize dynamic quantization for individual
layers. Specifically, when models are deployed on FPGA, the
hardware optimization process exacerbates accuracy perfor-
mance degradation, particularly in MLP-1d models. Thus, for
the int8 quantization scheme, it is crucial to perform global
optimization based on parameter distribution and to execute
customized layer-specific optimizations.

As shown in Fig 16, the corresponding model sizes un-
der different quantization schemes are statistically analyzed.
Overall, the ResNet-1d corresponding model size is only about
2.42MB, which is much smaller than other models. The main
reason is that ResNet-1d model contains fewer parameters.
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TABLE II
THE NUMBER OF DIFFERENT MODEL PARAMETERS.

Model Total Params Trainable Params Non-trainable Params

ResNet-1d 579183 575913 3270

VGG16-1d 5157359 5148841 8518

MLP-1d 7916911 7,916,911 0

Compared with the original model, the size of TF-float16
quantization model decreased by approximately 52.95%, while
the INT8 for FPGA deployment can compress the model to
0.86 MB, bringing about 64.48% reduction. As for VGG16-
1d, due to the inclusion of massive parameters, bring a larger
model size. However, after the quantization with FPGA-INT8,
the model size is reduced to 5.322MB which is about 45.60%
compared to the original. The MLP-1d model contains massive
parameters in the fully connected layer, but due to the low
efficiency of extracting RFF features, the final identification
performance is not ideal. Those TensorFlow (TF) based quan-
tization methods leverage optimized tools provided by TF ,
bring a smaller quantized model size compared to the Vitis-
INT8 quantization scheme, despite having a same bit width.
The main reason is that due to the efficient storage mechanisms
within TF, which outperform the Vitis-ai framework. The
Vitis-ai quantizes convolutional, activation layers and retains
redundant information, leading to larger model sizes. In con-
trast, the FPGA-INT8 quantization scheme builds upon Vitis-
INT8 by incorporating additional model analysis, optimiza-
tion, and code stream compilation, enabling compatibility with
the FPGA DPU cores. This further optimization significantly
reduces the quantized model size. Therefore, the mdoel size of
the quantized model is influenced by quantization and storage
optimization strategies. Comparing with Fig. 15, it can be
found that the performance constraints of the model include
not only the parameters and quantization method of the model,
but also the structural characteristics of model.

As demonstrated in Table II, it presents the parameter
statistics of three distinct models, encompassing the total
number, trainable, and non-trainable parameters. Furthermore,
ResNet-1d, VGG16-1d and and MLP-1d comprises 579183,
515359 and 791691 parameters, respectively. Besides, Table II
also reveals that both ResNet-1d and VGG16-1d feature non-
trainable parameters, typically associated with fixed opera-
tions within the model. Conversely, all parameters in MLP-
1d are trainable. Despite the simplistic structure of MLP-1d,
the massive parameters leading to heightened computational
complexity and training costs.

To further investigate the scheduling performance bottleneck
of the DPU across different operational modes, throughput
is assessed for various DDR controller (DDRC) channels
linked to the DPU’s underlying acceleration core. As depicted
in Fig. 17, allocating all testing samples to different DPU
cores for inference via distinct DDRC channels after they
are received through external channel. Fig. 17(a) demonstrates
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Fig. 17. The DPU/DDRC throughput via different DPU scheduling schemes.

that within single-core operation mode, the model retrieves
testing samples externally and transfers it to the respective
core. Owing to the limitations of single-core processing, data
retrieval rates are slower. Once the inference calculations are
complete, the results are transmitted via the DDRC channel.
Contrastingly, the four-cores mode utilizes different DDRC
configuration at the reading stage, achieving considerably
faster speeds compared to single-core mode. Additionally, the
FPGA system’s computing resources and bandwidth schedul-
ing mechanism are likely highly optimized. Regardless of the
number of DPU cores utilized, these mechanisms effectively
coordinate the computation and data transmission of each core,
thereby minimizing resource waste and imbalance. Once all
inference tasks are completed, the system begins scheduling
and outputting the final corresponding results. Although the
calculation process benefits from the acceleration provided by
multiple DPU cores, the output of results is primarily governed
by the DDRC and its scheduling, rather than the number
of DPU cores. As a result, the data output latency of the
data remains largely unaffected by the number of active DPU
cores. In summary, the model significantly accelerates both
data reading and inference processes in the multi-cores parallel
mode. However, the computing latency reflects an approximate
doubling of overall efficiency of four-cores mode.

Model inference latency is a critical determinant for the
practical application, influenced by factors such as the numbers
of parameters, model architecture, and the implementation
of parallel computing. Table III presents the computed in-
ference latency for various models, tested on samples under
different quantization schemes and record the corresponding
latency. Additionally, the FPGA-int8 scheme is deployed to the
KV260 platform for evaluating the model inference latency. It
can be found from Table III that quantization typically can
achieve effective reduction of the inference latency compared
to original model with the notable exception of the dynamic
quantization method. Dynamic quantization exhibits a consid-
erable increase in inference latency, attributable to its complex
optimization calculations. The Vitis-int8 scheme significantly
reduces inference latency across all models due to the deep
compression and optimized calculations process. However, the
model quantization also brings significant reduction towards
identification accuracy. As for FPGA-int8 quantization, all
models demonstrate improvements in latency performance
to varying extents, correlated with the parameters size and
structure of the model. Additionally, four-cores can markedly
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TABLE III
THE AVERAGE PER SLICE TESTING LATENCY OF QUANTIFIED MODEL.

Model Quantization Latency (s)

ResNet-1d

TF-No 0.00125
TF-Float16 0.00123

TF-Dynamic-Range 0.08751
Vitis-INT8 0.00098

FPGA-INT8 (4 core) 0.00064
FPGA-INT8 (1 core) 0.00121

VGG16-1d [37]

TF-No 0.00404
TF-Float16 0.00388

TF-Dynamic-Range 0.44814
Vitis-INT8 0.00075

FPGA-INT8 (4 core) 0.00110
FPGA-INT8 (1 core) 0.00166

MLP-1d [38]

TF-No 0.00148
TF-Float16 0.00153

TF-Dynamic-Range 0.00054
Vitis-INT8 0.00030

FPGA-INT8 (4 core) 0.00120
FPGA-INT8 (1 core) 0.00180

reduce the inference latency, achieving approximately 50%
improvement with ResNet-1d. In summary, DPU based edge
computing nodes substantially reduce inference latency with-
out severely compromising model performance. This advance-
ment is crucial for deploying models in critical tasks within
future intelligent IoV networks.

VI. CONCLUSION

In this paper, we propose a novel FFSFNet framework
which combines federated learning with fractional wavelet
scattering networks to efficiently extract RFF features, re-
ducing data redundancy and significantly enhancing model
interpretability. Simultaneously, the incorporation of federated
learning ensures privacy, reduces communication overhead
and computational resources requirements through DEI across
numerous resource-limited IoV nodes. To address memory
and computing resource limitations, we conducted a compre-
hensive analysis of quantization schemes and validated with
FPGA DPU accelerator. Extensive experiments on practical
datasets, involving 35 different heterogeneous nodes, assessed
the performance of FFSFNet against various models and
quantization schemes. Furthermore, ResNet-1d consistently
achieved the remarkable testing accuracy under centralized
training, outperforming VGG16-1d and MLP-1d, particularly
with fewer samples. Under the federated learning framework,
ResNet-1d FedProx achieves approximately 99% accuracy
benefiting from the adaptive proximal term. The ResNet-
1d model with float16 quantization can maintain 99.46%
without any decreasing while reducing model size by 52.95%.
However, although the model size can be reduced by 64.48%
with FPGA int8 quantization scheme, it also causes about
29.91% accuracy degradation. Furthermore, model inference
latency with FPGA acceleration is reduced to 1.21ms with
single-core mode and 0.64ms with multi-core parallel mode,

outperforming GPU servers mode. Notably, the superior per-
formance of the FFSFNet and its quantization scheme offers a
promising distributed edge intelligence-based RFF framework
for intelligent IoV.
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S. Kumar, and H. B. McMahan, “Adaptive Federated Optimization,” 2020,
arXiv:2003.00295.

[56] M. Chahoud, H. Sami, A. Mourad, S. Otoum, H. Otrok, J. Bentahar,
and M. Guizani, “On-demand-fl: A dynamic and efficient multicriteria
federated learning client deployment scheme,” IEEE Internet Things J.,
vol. 10, no. 18, pp. 822–834, 2023.

[57] H. Zhang, K. Zeng, and S. Lin, “Fedur: Federated learning optimization
through adaptive centralized learning optimizers,” IEEE Trans. Signal
Process., vol. 71, pp. 2622–2637, 2023.

[58] M. Piva, G. Maselli, and F. Restuccia, “The tags are alright: Robust
large-scale rfid clone detection through federated data-augmented radio
fingerprinting,”in Proc. Int. Symp. Mobile Ad Hoc Networking Comput.,
New York, NY, USA, July. 2021, pp. 41-–50.

[59] J. Shi, H. Zhang, S. Wang, B. Ge, S. Mao, and Y. Lin, “Fedrfid:
Federated learning for radio frequency fingerprint identification of wifi
signals,” in Pro. IEEE Glob. Commun. Conf., Virtual, Online, Brazil, Dec.
2022, pp. 154–159.

[60] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” 2018, arXiv:1712.05877.

[61] I. Hubara, Y. Nahshan, Y. Hanani, R. Banner, and D. Soudry, “Improving
post training neural quantization: Layer-wise calibration and integer
programming,”2020, arXiv:2006.10518.

[62] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017, arXiv:1412.6980. [Online]. Available: https://arxiv.org/abs/1412.
6980

[63] H. Xie and Z. Qin, “A lite distributed semantic communication system
for internet of things,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp.
142–153, 2021.




